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ABSTRACT

We present a data-driven approach for predicting the behavior of (i.e. profiling) a given parameterized, non-
linear time-dependent audio signal processing effect. Our objective is to learn a mapping function that maps
the unprocessed audio to the processed, using time-domain samples. We employ a deep auto-encoder model
that is conditioned on both time-domain samples and the control parameters of the target audio effect. As a
test-case, we focus on the offline profiling of two dynamic range compressors, one software-based and the other
analog. Our results show that the primary characteristics of the compressors can be captured, however there is
still sufficient audible noise to merit further investigation before such methods are applied to real-world audio

processing workflows.

1 Introduction

The ability to digitally model musical instruments and
audio effects allows for multiple desirable properties
[1], among which are i) portability — virtual instru-
ments and software effects require no space or weight;
ii) flexibility — many such effects can be stored and
accessed together and quickly modified; iii) signal to
noise — often can be higher with digital effects; iv) cen-
tralized, automated control; v) repeatability — digital
effects can be exactly the same, as opposed to physical
systems which may require calibration; and vi) exten-
sion — the development of digital effects involves fewer
constraints than their real-world counterparts.

The process of constructing such models has tradition-
ally been performed using one of two main approaches.
One approach is the physical simulation of the pro-
cesses involved [1], whether these be acoustical pro-

cesses such as reverberation[2] or “virtual analog mod-
eling” of circuit elements [3, 4]. The other main ap-
proach has been to emulate the requisite audio features
via signal processing techniques which seek to capture
the salient aspects of the sounds and transformations
under consideration. Both of these approaches are typ-
ically performed with the goal of faithfully reproduc-
ing one particular effect, such as audio compressors
[5,6,7,8].

Rather than modeling one particular effect, a differ-
ent class of systems are those which can ‘profile’ and
‘learn’ to mimic the tonal effects of other units. One
popular commercial example is the Kemper Profiler
Amplifier 1 which can learn to emulate the sounds of
amplifiers and speaker cabinets in the user’s possession,
to enable them to store and easily transport a virtual ar-
ray of analog gear. Another product in this category is

Uhttps://www.kemper-amps.com/profiler/overview
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the “ToneMatch” feature of Fractal Audio’s Axe-Fx 2,
which supplies a large number of automatically-tunable
pre-made effects units including reverberation, delay,
equalization, and formant processing.

The present paper involves efforts toward the goal of
profiling ‘general’ audio effects. For systems which
are linear and time-invariant (LTI), one can develop
finite impulse response (FIR) filters, e.g., for convo-
lution reverb effects. But for systems which involve
nonlinearity and/or time-dependence, more sophisti-
cated approaches are required. Deep learning has
demonstrated great utility at such diverse audio signal
processing tasks as classification [9], onset detection
[10], source separation [11], event detection [12], dere-
verberation [13], denoising [14], remixing [15], and
synthesis[16, 17, 18], as well as dynamic range com-
pression to automate the mastering process [19]. In
the area of audio component modeling, deep learning
has been used to model tube amplifiers [20] and most
recently guitar distortion pedals [21]. Besides creating
specific effects, efforts have been underway to explore
how varied are the types of effects which can be learned
from a single model [22], to which this paper comprises
a contribution. A challenging goal in deep learning
audio processing is to devise models that operate di-
rectly on the raw waveform signals, in the time domain,
known as “end-to-end" models [23]. Given that the
raw waveform data exists in the time domain, there are
questions as to whether an end-to-end formulation is
most suitable [24], however it has been shown to be
useful nevertheless. Our approach is end-to-end, how-
ever, we make use of a spectral representation within
the autoencoders and for regularization.

Our efforts in this array have been focused on model-
ing dynamic range compressors for three reasons: 1.
They are a common feature of audio engineering signal
chains. 2. They constitute a challenging problem to
solve: As noted earlier, existing methods are sufficient
for many linear and/or time-independent effects. Our
own investigations demonstrated that effects such as
echo or distortion could be modeled via Long Short-
Term Memory (LSTM) cells, but compressors proved
to be ‘unlearnable’ to our networks. This present work
therefore describes one solution to this problem. 3.
They represent a set of capabilities that may be required
for modeling more general effects

Zhttps://www.fractalaudio.com/iii

Thus the method presented in this study is intended for
learning general audio effects, for which the special
case of the compressor represents a useful and chal-
lenging milestone. In this study we are not estimating
compressor parameters [8], although deep neural net-
works have recently shown proficiency at this task as
well [25]. Rather, being given parameters associated
with input-output pairs of audio data, we synthesize
audio by means of a network which aims to emulate
‘arbitrary’ mappings. The hope is that by performing
well on the challenging problem of dynamic range com-
pression, such a network could also prove useful for
learning other audio effects as well. Given that the goal
of our system is to successively approximate the audio
signal chain through a process of training, we refer to
the computer code as SignalTrain.3

This paper proceeds as follows: In Section 2, we de-
scribe the problem specification, the design of the neu-
ral network architecture, its training procedure, and the
dataset. In Section 3 we relate results for two com-
pressor models, one digital and one analog. Finally we
offer some conclusions in section 4 and outline some
avenues for future work.

2 System Design

2.1 Problem Specification

The objective is to accurately model the input-output
characteristics of a wide range of musical signal pro-
cessing effects and their parameterized controls, in a
model-agnostic manner. That is to say, not to merely
infer certain control parameters which are then used
in conjunction with pre-made internal effect modules
(e.g., as is done by Axe-FX). We apply our method to
the case of compressors in this paper, but we operate
no internal compressor model — the system learns what
a compressor is in the course of training using a large
variety of training signals and control settings.

We conceive of the task as a supervised learning re-
gression problem, performed in an end-to-end manner.
While other approaches have made use of techniques
such as p-law companding and one-hot encoding to
formulate the task as a classification problem [27], we
have not yet done so. Rather than predicting one audio
sample (i.e., time-series value) at a time, we map a

3Source code and datasets accompanying this are paper publicly
released via Supporting Materials [26].
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range of inputs to a range of outputs, i.e., we window
the audio into “windows.” This allows for both speed
in computation as well as the potential for modeling
non-causal behavior such as reverse-audio effects or
time-alignment. 4

We trained against two software compressors, with sim-
ilar controls but different time scales. The effect we
designate “Comp-4C” which operates in a sequential
manner (later samples explicitly depend on earlier sam-
ples) and has four controls for Threshold, Ratio, Attack
and Release. The other formulation, “Comp-4C-Large,”
allows for wider ranges of the control parameters. For
an analog effect we used a Universal Audio LA-2A,
output audio for a wide range of input audio as we var-
ied the Peak Reduction knob and the Comp/Lim switch.
(The input and output gain knobs were left fixed in the
creation of the dataset.) These effects are summarized
in Table 1.

Typically audio effects are applied to an entire “stream”
of data from beginning to end, yet it is not uncommon
for digital audio effects processors to be presented with
only a smaller “window” (also referred to as a “chunk,”
“frame”, “input buffer,” etc.) of the most recent au-
dio, of a duration usually determined by computational
requirements such as memory and/or latency. For time-
dependent effects such as compressors, the size of the
window can have repercussions as information preced-
ing the window boundary will necessarily propagate
into the window currently under consideration. This
introduces a concern over “causality,” occurring over
a timescale given by the exponential decay due to the
compressor’s attack and release controls.

This suggests two different ways to approach training,
and two different ways to specify the dataset of pairs
of input audio and target output audio. The first we
refer to as “streamed target” (ST) data, which is the
usual method of applying the audio effect to the entire
stream at once. The second we refer to “windowed
target” (WT) data, in which the effect is applied se-
quentially to individual windows of input. WT data
will necessarily contain transient errors (compared to
ST data) occurring on a frequency of the inverse of
the window duration. If however one adds a “lookback
buffer,” i.e. making the length of the output shorter than
that of the input, then this “lookback” can be chosen

4The system could be modified to predict one sample at a time,
however our experience with this model has found this practice to be
neither necessary nor helpful.

to be large enough that transient errors in the WT data
decay (exponentially) below the “noise floor”” before
the output is generated. The goal of this study is to
produce ST data as accurately as possible, as it corre-
sponds to the normal application of audio effects, but
WT data is in some sense “easier” to learn. Indeed, in
our early attempts with the LA-2A compressor and ST
data, the model was not able to learn at all, because the
lookback buffer was not long enough.

The difference between ST and WT data constitutes a
lower bound on the error produced by our neural net-
work model: we do not expect the model to perform
better than the “true” effect applied to WT data. The de-
pendence of this error bound on the size of the lookback
buffer can be estimated in a straightforward way, and
can provide guidance on the size of buffer that should
be used when training the model. Such estimates are
shown in Figure 1. In order to allow for low enough
error while not putting too great a strain on compu-
tational resources, we will choose model sizes with
lookback windows sufficient to allow a lower bound on
the error in the range of 107> to 1074

Lookback (x10% samples) Lookback (x10 samples)
N 0 100 P00

10205 Comp-4C 10! % Comp-4C-Large
\ 102
4 N
10 N N
5 o 10-3
§ 0o X 210 N
e = 1074 N
o8] K204 N —h 2048 N
8192 S 107 8192 \
% N
0.0 0.2 0 2 4
Lookback (s) Lookback (s)
Fig.1: Mean Absolute Error (MAE) between

streamed target (ST) data and windowed target
(WT) data, for the software effect as a function
of lookback buffer size at 44.1 kHz, for two
different input window sizes (2048 and 8192).
This represents a theoretical limit for the accu-
racy of the neural network model.

2.2 Model Specification

The architecture of the SignalTrain model consists of
the front-end, the autoencoder-like module, and the
back-end module. The proposed architecture shares
some similarities with the U-Net [28] and TFNet [29]
architectures. Like U-Net, it has an encoder-decoder
“hourglass” configuration with skip connections span-
ning across the middle, and like TFNet, it operates
in both the time and spectral domains explicitly. The

AES 147th Convention, New York, 2019 October 16 — 19
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Effect Name \ Type \ Controls: Ranges

Comp-4C Software | Threshold: -30-0 dB, Ratio: 1-5, Attack: 1-40 ms, Release: 1-40 ms
Comp-4C-Large | Software | Threshold:-50-0 dB, Ratio: 1.5-10, Attack: 0.001-1 s, Release: 0.001-1 s
LA-2A Analog Comp/Lim Switch: 0/1, Peak Reduction: 0—100

Table 1: Compressor effects trained. Comp-4C and Comp-4C-Large allow different control ranges but use the
same Python code, which is available in supplementary materials [26].

front-end module is comprised by a set of two 1-D
convolution operators that are responsible for produc-
ing a signal sub-space similar to a time-frequency de-
composition, yielding magnitude and phase features.
The autoencoder module consists of two deep neural
networks for processing individually the magnitude
and phase information of the front-end module. Each
deep neural network in this autoencoder consists of 7
fully connected, feed-forward neural networks (FC). It
should be noted that the “bottleneck™ latent space of
each deep neural network is additionally conditioned
on the control variables of the audio effect module that
are represented as one-hot encoded vectors.

Figure 2 illustrates the neural network architecture for
the SignalTrain model, which essentially learns a map-
ping function from the un-processed to the processed
audio, by the audio effect to be profiled, and is condi-
tioned on the vector of the effect’s controls (e.g., the
“knobs”). In order to obtain the predicted output wave-
form, the back-end module uses another set of two 1-D
transposed convolutional operators. Similarly to the
analysis front-end, the back-end is initialized using the
bases of a discrete Fourier transform. It should be stated
that all the weights are subject to optimization and are
expected to vary during the training of the model. The
frame and hop sizes used for the convolutions are 1024
and 384 samples, respectively.

Unlike some other proposed architectures which use
convolutional layers [28], we use fully-connected (FC)
layers that have shared-weights with respect to the sub-
space dimensionality (i.e., the frequencies). That is
done for two reasons. The first reason is that the num-
ber of the parameters inside the model is dramatically
reduced, and secondly we preserve the location of the
magnitude and phase information of the original signal.
Essentially, the operations carried by each deep neu-
ral network in the autoencoder module can be seen as
non-linear affine transformations of the transpose time-
frequency patches (spectrograms) of the input signal.
Furthermore, we apply residual (additive) skip con-
nections [31] inspired by U-Net [28] and “skip filter”

( Input ][ Controls ¥
( Conv1D (STFT Init) ) \\\
“Mag. Spectrogram” ) “Phase Spectrogram”\ \\\
Y Y N\
\* FC / \ FC / *\\ \\
Controls Controls ‘\l \
TR ) (- |
| b
[ FC | (IFE J /
Y N Y/ s S

N O s S [
77 Transp-Convib (STET nit)) -~
Y Output )

T Target )

————— Skip residual (additive)
----------- Skip filter (multiplicative)

* Copy
w4 “Lookback” omitted from output

Fig. 2: Diagram of the SignalTrain network architec-
ture. The designations ‘STFT, ‘ISTFT, ‘Mag-
nitude’ and ‘Phase’ are used for simplicity,
since the complex-valued discrete Fourier trans-
form is used to initialize the weights of the
1-D convolution layers. All other layers are
fully-connected (FC) with ELU [30] activations.
Typically our output and target waveforms are
smaller than the input; this difference in size
(indicated by the cross-hatched region desig-
nated “lookback’) means the autoencoder is
‘asymmetric.” On the autoencoder output, the
“magnitude spectrogram designated M is used
for regularizing the loss, Eq. (1).

(multiplicative) connection for the magnitude only [19].
These skip connections dramatically improve the speed
of training, and can be viewed in three complemen-
tary ways: allowing information to propagate further
through the network, smoothing the loss surface [32],
and/or allowing the network to compute formidable
perturbations subject to the goal of profiling an audio
effect.

AES 147th Convention, New York, 2019 October 16 — 19
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In the middle of the autoencoder, we concatenate values
of the effect controls (e.g., threshold, ratio, etc.) and
“merge” these via an additional FC layer. The first layer
of the autoencoder maps the number of time frames in
the spectrograms to 64, with subsequent layers shrink-
ing (or, on the output side, growing) this by factors of
2. The resulting model has approximately 4 million
trainable parameters.

2.3 Training Procedure

We use a log-cosh loss function [33], which has similar
properties to the MAE (i.e., L1 norm divided by the
number of elements) in the sense that it forces the
predicted signal to closely follow the target signal at all
times, however the roundness of the log-cosh function
near zero allows for significantly better training at low
loss values than does L1, which has a discontinuous
derivative at zero.

Furthermore we include an L1 regularization term with
a small coefficient A (e.g., 2e-5), consisting of the mag-
nitude spectrogram M from the output side of the au-
toencoder, weighted exponentially by frequency-bin
number f to help reduce high-frequency noise in the
predicted output. Thus the equation for the loss func-
tion is given by

Loss = log [cosh (F —y)] + A exp[(fi) *] - [M|L1, (1)

where § and y are the predicted and target outputs,
respectively, and choosing & = 1 implies exponential
weighting by frequency bin fi, and choosing & =0
disables any such weighting.

Simply training on a large amount of musical audio
files is not necessarily the most efficient way to train
the network — depending on the type of effect being
profiled, some signals may be more ‘instructive’ than
others. A compressor requires numerous transients of
significant size, whereas an echo (or ‘delay’) effect may
train most efficiently on uncorrelated input signals (e.g.,
white or pink noise). Therefore, we augment a dataset
of music recordings with randomly-generated sounds
intended to provide both dynamic range variation and
broadband frequency coverage.

By virtue of the automation afforded by software ef-
fects such as Comp-4C, we can train indefinitely us-
ing randomly-synthesized signals which change dur-
ing each iteration. But for the LA-2A, we created a
large (20 GB) input dataset of public domain musical

sounds and randomly-generated test sounds, concate-
nated these and divided the result into (unique) files of
15-minute duration, using a fixed increment of “5" on
the LA-2A’s Peak Reduction knob between recordings,
for both settings of the Comp/Lim switch. For prere-
corded (i.e., non-synthesized) audio, windows from the
input (and for ST data, target) data are copied from ran-
dom locations in the audio files, along with the control
settings used. Data augmentation is applied only in
the form of randomly flipping the phase of inputs and
targets.

To achieve the results in this paper, we trained for
two days (see “Implementation,” below) on what corre-
sponded to approximately 2000 hours of audio sampled
at 44.1 kHz (or 130 GB if it were stored on disk). As
a performance metric, we keep a separate, fixed “vali-
dation set” of approximately 12 minutes of audio; all
results displayed in this paper are for validation data,
i.e., on data which the network has not “seen” before.

The arrangement of this data is “maximally shuffled,”
i.e., we find that training is significantly more smooth
and stable when the control settings are randomly
changed for each data window within each mini-batch.
Trying to train using the same knob settings for large se-
quences of inputs — as one might expect to do by taking
a lengthy pair of (input-output) audio clips obtained at
one effect setting and breaking them up into a sequen-
tial mini-batch of training windows — results in unstable
training in the sense that the (training and/or valida-
tion) loss varies much more erratically and, overall,
decreases much more slowly than for the ‘maximally
shuffled’ case in which one varies the knob settings
with every window. This shuffling from window to
window is another reason why our model is not au-
toregressive: because we wish to learn to model the
controls with the effect.

When starting from scratch, weights are initialized ran-
domly except for the weights connecting to the input
and output layers convolutional layers, which are ini-
tialized using basis values corresponding to a Discrete
Fourier Transform (DFT), and its inverse transform,
respectively. These are subsequently allowed to evolve
as training proceeds. For the different task of image
classification on the ImageNet dataset [34], the combi-
nation of Adam [35] with weight decay [36] has been
shown [37] to be among the fastest training methods
available when combined with learning rate scheduling.
We also adopt this combination for our problem.

AES 147th Convention, New York, 2019 October 16 — 19
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An important feature, found to decrease both final vali-
dation loss values and the number of epochs required
to reach them, is the use of learning rate scheduling,
i.e., adjusting the value of the learning rate dynami-
cally during the course of gradient-based optimization,
rather than keeping the learning rate static. We follow
the “l1-cycle” policy [38], which incorporates cosine an-
nealing [39], in the manner popularized by the Fasti.ai
team [40]. Compared to using a static learning rate, the
1-cycle policy allowed us to reach roughly 1/10th the
error in 1/5 the time.

2.4 Implementation

The SignalTrain code was written in Python using the
PyTorch [41] library along with Numba for speeding
up certain subroutines. Development and training was
primarily conducted on a desktop computer with two
NVIDIA Titan X GPUs. Later in the project we up-
graded to two RTX 2080Ti GPUs, which, with the bene-
fit of NVIDIA’s “Apex” mixed-precision (MP) training
library 3, yielded speedup of 1.8x over the earlier runs.

3 Results

3.1 Software Compressor: “Comp-4C”

We ported MATLAB code to Python for a single-band,
hard-knee compressor with four controls: threshold,
ratio, attack and release times [42]. (This compressor
implements no side-chaining, make-up gain or other
features.) As it is a software compressor, the training
data could be generated “on the fly," choosing control
(‘knob’) settings randomly according to some proba-
bility distribution (e.g., uniform, or a beta distribution
to emphasize the endpoints ). This synthesis allows
for a virtually limitless size of the training dataset. Our
early experiments used such a dataset, but given that
intended goal of this system is to profile systems within
a finite amount of time, and particularly analog effects
which would typically require the creation of a finite
set of recordings, we chose to emulate the intended use
case for analog gear, namely a finite dataset in which
the control knob settings are equally spaced, with 10
settings per control.

Shttps://github.com/NVIDIA/apex

SInitially we chose control settings according to a symmetric beta
distribution, with the idea that by mildly emphasizing the endpoints
of the control ranges, the model would learn more efficiently, how-
ever experience showed no performance enhancement compared to
choosing from a uniform distribution.

Figure 3 shows the performance of the model compared
to the target audio, for the case of a step-response, a
common diagnostic signal for compressor performance
[4, 8,43]. The predicted values follow the target closely
enough that we show their differences in Figure 4. Key
differences occur at the discontinuities themselves (es-
pecially at low attack times), and we see that the pre-
dictions tend to “overshoot” slightly on at the release
discontinuity (we speculate that this is due to slight
errors in the phase in the spectral decomposition in the
model), but that in between and after the discontinuities
the predictions and target match closely.

------ Input Target ~—— Predicted
A/R =0.005s A/R =0.015s A/R=0.03s

00— — —

T=-12dB
o
o

4
o

T=-24dB
o
)

0.0

0.000 0.025 0.050 0.075 0.000 0.025 0.050 0.075 0.000 0.025 0.050 0.075
t(s) t(s) t(s)

Fig. 3: Sample model step-response performance for
the Comp-4C effect using WT data on a domain
of 4096 samples at 44.1 kHz, for various values
of threshold (T) and attack-release (A/R, set
equivalently). In all graphs, the ratio=3. See
Figure 4 for a plot of the difference between
predicted and target outputs, and Supplemental
Materials [26] for audio samples and an inter-
active demo with various input waveforms and
adjustable parameters.

As noted in Section 2.1, the size of the lookback win-
dow can have an effect on the error bounds. Figure 5
shows that the loss on the Validation set to be consistent
with estimates obtained for the cases depicted in Figure
1. And yet listening to these examples (see Supplemen-
tal Materials [26]) one notices noise in the predicted
results, suggesting that the lookback window size (or
“causality noise”) is not the only source of error in the
model.

Although step responses are a useful diagnostic, the
neural network model approximates the input-output
mappings it is trained on, and is ultimately intended

AES 147th Convention, New York, 2019 October 16 — 19
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—— Difference = Target-Predicted
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T=-24dB

Fig. 4: The difference between predicted and target
outputs for the step responses shown in Figure
3. We see the largest errors occur precisely at
the step discontinuities, likely due to inadequate
approximation in the “spectral” representation
within the model.

Training Validation
NS —— ST 92.9ms ]
10729 '\ WT 92.9ms |1
—— ST 2.88s
10—3 4
2
Q
—
104 RX) ]
10° 10! 102 10%10° 10! 102 10°
Epoch Epoch

Fig. 5: Typical loss on Training & Validation sets for
Comp-4C-Large effect, while training for ST
and WT data, for two different lookback win-
dow lengths. (Because our data is randomly-
sampled, “Epoch” does not refer to a complete
pass through the dataset, but rather the arbitrary
selection of 1000 mini-batches.)

for use with musical sounds which may typically lack
such sharp discontinuities. Thus a comparison of com-
pressor output for musical sounds is in order as well.
Figure 6 shows a comparison of frequency spectrum
for a full-band recording (i.e., drums, bass, guitar, vo-
cals) in the testing dataset. It also shows that scaling
the L1 regularization exponentially by frequency can
yield a reduction in high-frequency noise, sacrificing

—20
~30
— 401

—50{,/"

Level (dB)

—601

—T701

Predicted, a =0
—801 —— Predicted, a =1

10! 102 10° 10*
Frequency (Hz)

Fig. 6: Power spectra for musical audio in the Test
dataset [26] compressed with Comp-4C control
parameters [-30, 2.5, .002, .03]. Here we see
the effects of weighting the L1 regularization
in the loss function Eq. (1) exponentially by
frequency (o = 1) or not (@ = 0): weighting
by frequency shifts a nontrivial amount of high
frequency noise toward a proportionally small
increase at low frequencies. Although noise is
still clearly audible in both predicted outputs
(refer to Supplemental Materials [26] to hear
audio samples), the result is that the listener per-
ceives less overall noise in the output when the
frequency-weighted L1 regularization is used.

a proportionally smaller amount of accuracy at low
frequencies.

3.2 Analog Compressor: LA-2A

A primary interest in the application our method is not
for cases in which a software plugin already exists, but
rather for the profiling of analog units. As an example,
we choose the Universal Audio’s Teletronix LA-2A, an
electro-optical compressor-limiter [44], the controls for
which consist of three knobs and one switch. Given
that two of the knobs are only for input-output gain
adjustment, for this study, we focus only on varying the
“Peak Reduction” (PR) knob, and the “Compress/Limit”
switch. The switch is treated like a knob, with limits of
0 for “Compress" to 1 for “Limit."

Figure 7 shows the loss on the validation set for the
LA-2A for different lookback sizes. The dashed (black)
line shows a model with an input size of 8192%2=16384

AES 147th Convention, New York, 2019 October 16 — 19
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Loss (Validation Set)
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10° 10t 10° 10°
Epoch

Fig. 7: Training history on the LA-2A dataset for dif-
ferent lookback sizes. The “kink” near epoch
300 is a common feature of the 1-cycle pol-
icy [38, 40] when using an “aggressive” learn-
ing rate (in this case, 7e-4). Both runs achieve
comparable losses despite the longer lookback
buffer needing nearly 5 times as much execu-
tion time.

and took 15 hours to run, the solid (blue) line is a model
with input size of 8192%27=221184 and took 72 hours.
Both runs used output sizes of §192 samples. In all our
runs, a loss value of approximately le-4 is achieved, re-
gardless of the size of the model — even for a lookback
extending beyond the ““5 seconds for complete release”
typically associated with the LA-2A [45]. This indi-
cates that the finite size of the lookback window (or
“causality noise”) is not the primary source of error;
this is consistent with the Comp-4C results (e.g., see
Figure 5). The primary source of error remains an
ongoing subject of investigation. Graphs of example
audio waveforms from the Testing dataset are shown in
Figure 8, where it is noteworthy that the model will at
times over-compress the onset of an attack as compared
to the true LA2A target response.

4 Conclusion

In pursuit of the goal of capturing and modeling generic
audio effects by means of artificial neural networks, we
have focused this study on dynamic range compressors
as a representative problem set because their nonlinear,
time-dependent nature makes them a challenging class
of problems, and because they are a class of effects
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L 0.0 1 Prpv———rbrrripimibapitin pos—
« 0.0 1
0.5+
T T T -0.11- T T
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Fig. 8: Sample output for LA-2A using drum record-
ings from the Testing dataset, for various values
of the Peak Reduction control. (The Comp/Lim
switch setting had negligible effect on these
outputs.) We see that the model’s predictions
typically slightly underestimate the target value
for attack transients. Audio samples are avail-
able in Supplemental Materials[26].

of high interest in the field of musical audio produc-
tion. Rather than rely on domain-specific knowledge
of audio compressors in constructing our end-to-end
system, our model learns the effects the parameterized
controls in the process of training on a large dataset
consisting of input-output audio pairs and the control
settings used. We treat signals as wide-sense station-
ary for the sake of batch-based SGD optimization and
we are aware that we miss some information due to
that. That can be tackled by balancing the trade-off
between time-frequency resolution. The results capture
the qualities of the compressors sampled, although the
speed of execution and the residual noise in the neural
network output suggest that practical implementations
of this method may await improvements in computer
implementation and refinements to the model. We are
interested in trying a model based on WaveNet [27, 46]
or WaveRNN[47] for comparisons to our model regard-
ing speed and accuracy. As the intent of this effort are
the modeling of effects in general, more work remains
to probe the limits of our method toward a variety of
other signal processing effects, both analog and digital,

AES 147th Convention, New York, 2019 October 16 — 19
Page 8 of 11



Hawley, Colburn, and Mimilakis

Profiling Compressors with Deep Neural Nets

as well for the construction of new effects by solving
“inverse problems” such as de-compression [48].
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