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ABSTRACT 

A short interdisciplinary, educational survey is presented, illustrating ways in which audio spectral analysis and 
quantum physics are intimately related.  A basic conceptual understanding of Fourier transforms and their 
applications in audio engineering is sufficient to grasp aspects of quantum wave packets, the Heisenberg Uncertainty 
Principle, and more.  Similarly, concepts from quantum mechanics can inform the understanding of audio effects 
such as aliasing, convolutions and wavelet transforms.  The presenter is a computational physicist who authored a 
computer audio analysis suite for audio engineering students, noting several interdisciplinary connections in the 
process.    

 

1. OVERVIEW OF FOURIER TECHNIQUES 

1.1. Fourier Essentials 

In audio engineering, one typically sees a signal referred 
to by its time domain representation v(t) (e.g., a 
waveform display in a Digital Audio Workstation of 
microphone voltage vs. time) and/or its frequency 
representation or ``frequency spectrum'' A(f) (e.g., the 
display of a real-time analyzer).  One representation can 
be exchanged for the other via the mathematical 
operations developed by Jean Baptiste Joseph Fourier 
for the study of heat flow [1].  Although a Fourier 
transform of the real-valued signal v(t) actually results 
in a complex-valued function V ( f ) , many applications 
in audio engineering display only the magnitude of the 
latter, i.e. A( f ) = V ( f ) , while the phase information is 

not displayed.  One justification for failure to display 
phase information can be traced to Ohm’s Law of 
Hearing [2], the claim that the human auditory system is 
insensitive to variations of phase in the harmonics of 
complex tones.   

Figure 1 shows some examples of signals and their 
Fourier transforms.  We see in row (a) a sine wave, 
which comprises one frequency and has nontrivial 
values on the domain of all t, i.e. has support of all t.  
Row (b) shows in some sense the opposite extreme, 
namely of a “spike” or “impulse” signal, whose 
mathematical ideal is a Dirac delta function.  We see the 
familiar result that this signal in some sense “contains 
all frequencies” as seen in its Fourier transform graph; 
thus the utility of an “impulse response”, e.g. in room 
reverberation studies, for encapsulating the entire 
frequency spectrum.  Finally row (c) shows a “Gabor 
wavelet,” which is a cosine multiplied by a gaussian.  
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This is a moderately time-localized and bandwidth-
limited signal that serves as a useful depiction of a 
quantum mechanical wave-particle “wave packet.” 

In general, we make the observation that the more 
‘localized’ a signal is in time, the more ‘spread out’ it is 
in frequency, and vice versa.  Mathematically, we can 
express the signal’s support in time as Δt and in 
frequency as Δf, and write  

         ΔfΔt ≥ ε,    (1.1) 
for some constant ϵ. As we will see, this is the central 
observation that underlies the Heisenberg Uncertainty 
Principle in quantum physics. 
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Figure 1. Examples of Fourier transforms.  The signals 
in the left column are real-valued functions v(t), and 
those in the right show the magnitude of the Fourier 

transform A(f) = |V*V|.  a) A sine wave transforms to a 
Dirac delta function, i.e. a sine wave has only one 

frequency. b) A delta function transforms to a flat line, 
that is to say, “an impulse contains all frequencies.”      

c) A Gabor (or Morlet) wavelet, which is the product of 
a cosine wave and a gaussian, transforms to a gaussian. 

1.2. Short Time Fourier Transforms, and 
Wavelets 

One of the most common displays for audio engineering 
is the so-called short time Fourier transform (STFT), in 
which a running calculation of the Fourier spectrum is 
made using a short “frame” of data preceding (and, 
when possible, following) each time in the signal.  This 
can then be used to produce a spectrogram image of the 
sound. 

 

Figure 2. Sample Spectrogram.  Time series data in the 
top panel are broken into a series of “frames” of finite 

length; the Fourier transform of the data in each frame is 
plotted as a vertical slice in the lower panel, in which 

amplitude is shown via color and frequency runs 
upward from zero.  The weighting or window function 

applied over each frame can have mathematical 
similarities to forms which arise in quantum mechanics. 

Typically the data in each frame is weighted evenly, 
however a weighting or window function may be used 
to give greater weight to data values near the center time 
for each frame.  One windowing function with several 
desirable properties is a Gaussian shape, resulting in 
what is known as a Gabor transform.  It was Dennis 
Gabor, a physicist, who had made this application to 
STFTs based on the idea of a “wave packet” arising in 
quantum mechanics [3] which we discuss below.  
Specifically, taking the sinusoidal shape used in the 
Fourier transform, and multiplying by a Gaussian results 
in a Gabor wavelet (also known as a Morlet wavelet 
based on Jean Morlet’s application of Gabor’s wavelet 
to the field of seismology), shown in Figure 1c.  Several 
varieties of wavelets exist, but they all share the 
property that they are localized (e.g., in time) and are 
thus of great utility in reducing and representing 
transient phenomena such as seismological events and 
medical electrocardiogram (EKG) measurements.  
Furthermore, there exist digital “fast wavelet transform” 
methods for discrete datasets, which are O(N)  in 
computational cost, making them substantially faster 
than the O(NlogN) FFT algorithm, however their 

Frame 

t 

 f 

t 

v(t) 



Hawley  Fourier Trans., AE, & Quantum 
 

AES 135th Convention, New York, USA, 2013 October 17–20 

Page 3 of 4 

applications to musical audio signal processing are not 
nearly as widespread as Fourier techniques [4]. 

2. QUANTUM PHYSICS 

2.1. History of Quantum Mechanics 

The history of the development of quantum mechanics 
can be placed in close analogy with the study of 
electromagnetism [4]. The central question from the 
times of Newton and Huygens concerned the nature of 
light: “is it a wave, or a particle?” A general consensus 
emerged after many years that the answer is “both.” 
Light behaves like a classical wave under some 
circumstances, and like a classical particle under others. 
This culminated in Einstein’s Nobel-prize-winning 
explanation of the Photoelectric Effect, which relied on 
Planck’s quantization of light as bundles (later called 
“photons”) with energy E = hf and momentum p = h/λ, 
where h is Planck’s constant of 6.63×10−34 m2kg/s, and 
where f and λ are the frequency and wavelength of the 
(wave-like) light, respectively. 

In 1924, Louis de Broglie hypothesized that matter 
should have a similar particle-wave duality, and by 
analogy to light he used the classical particle 
momentum p to define a wavelength λ for these “matter 
waves,” known as the de Broglie Wavelength: 

λ =
h
p

.   (2.1) 

Three years later, de Broglie’s hypothesis was 
confirmed in the electron diffraction experiments of 
Davisson and Germer at Bell Labs and independently by 
Thompson in Scotland.  Note that h is a very small 
number, so for typical matter the wavelength is 
extremely short; the electrons in the aforementioned 
experiments had wavelengths on the order of those of x-
rays.  Heavier matter would tend to have even shorter 
wavelengths, indicating the rarity with which wave-like 
behavior is observed for macroscopic objects. 

In the meantime, the mechanics describing the evolution 
of de Broglie’s matter waves were given a mathematical 
basis by Erwin Schrödinger, who followed the analogy 
of electromagnetism [5] to arrive a complex-valued 
version of the heat equation (cue the tie-in with 
Fourier). Like the theory of electromagnetic and 
acoustical waves, the Schrödinger equation is a linear 
wave equation, in which superposition holds and thus 
Fourier techniques are useful.  

2.2. The Wavefunction and Wave Packets 

The Schrödinger equation describes the evolution of a 
complex-valued “wavefunction” ψ(x, t) , although often 
we may be interested in solutions which are “separable” 
in time & space, and thus we may often work in terms 
of the time-independent function ψ(x) .  Direct 
interpretation of the wavefunction as a physical quantity 
is somewhat challenging; one typically remarks that the 
wavefunction provides a sort of probability density for 
the emergence of particle-like properties.  Physical 
interpretations are made via observables, which serve as 
operators to ‘extract’ information encoded in the 
wavefunction.  In analogy with object-oriented 
computer programming, the wavefunction is an 
“object,” and observable quantities such as the position 
x and momentum p of the matter represented are applied 
as operators on the wavefunction ψ which then return 
the desired quantity.  

In order to describe the quantum version of a “particle,” 
the wavefunction ψ(x)we seek is one that is localized 
in space and oscillatory; something qualitatively similar 
(though in general not identical) to the Gabor wavelet 
shown in the left frame of Figure 1c if we were to take 
the horizontal axis as x instead of t – in which case the 
Fourier transform will give the wave number k =2π/λ, 
which is the “spatial analogue” of frequency.  Such a 
solution ψ(x)  is typically referred to as a “wave 
packet.”  As we can see from the right pane, this wave 
packet comprises a range of momentum values, 
because, given Equation (2.1), the momentum is 
proportional to k, namely p = hk/2π = ℏk, where 
quantum physicists use the notation ℏ (called “h bar”) 
to denote ℏ = h / 2π.   

Given this range of momentum present in a wave 
packet, we can gain a qualitative notion of the 
“uncertainty” relations developed formally below.  This 
range of momentum values at present implies that, for 
time-dependent cases ψ(x, t) , the wave packet will 
“spread out” as the “fast” parts of the packet outpace the 
“slow” parts.  In other words, the uncertainty in 
momentum implies an uncertainty in position as the 
wavefunction develops.  The mathematics is somewhat 
deeper and more subtle, but this qualitative picture can 
serve in some cases. 
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2.3. Quantum Uncertainty 

The Heisenberg Uncertainty Principle is essentially a 
statement about Fourier transforms.  It is a natural 
consequence of de Broglie’s discovery that matter has 
wave-like properties.  The wavefunction operators that 
provide position x and momentum p are Fourier 
transforms of one another, and thus localization in one 
variable implies a spreading out in another.  Formally 
this is 

ΔxΔp ≥ 
2
.  

Position x and momentum p together form just one 
example of what are commonly known as pairs of  
conjugate variables arising in quantum physics.  
Another pair is energy E and time t, which have a 
similar relation 

ΔEΔt ≥ 
2
.  

If we recall that E=hf, we see that this is related to the 
fact that, in a Discrete Fourier Transform, the frequency 
resolution Δf is no better than the inverse of the sample 
length Δt, 

ΔfΔt ≥1,  
which recalls the central observation expressed in 
Equation (1.1). 
 
A similar uncertainty relation can arise in digital signal 
processing, when insufficient sampling yields “aliasing” 
errors [7], and can mean that the uncertainty in 
measuring a given “macroscopic” signal quantity Q, 
such as the slope of the signal, is limited by the sample 
length, 

ΔQΔt ≥ ε,  
again for some constant ϵ determined by the specifics of 
the measurement.  Note that this mathematical similarity 
is not (obviously) due to any deep analogy between 
discretely sampled signals and any sort of spatial or 
temporal discretization in the quantum world.  Some 
such theories exist, notably due to luminaries like Carl 
von Weizsäcker (ur-theory), John Wheeler 
(pregeometry), David Finkelstein (spacetime code), 
David Bohm (topochronology) and Roger Penrose (spin 
networks) [9], however the discretization scale is 
typically of order of the Planck length LP = 1.62x10-35 

m, much shorter than the typical wavelengths of 
electrons and similar particles.  
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